

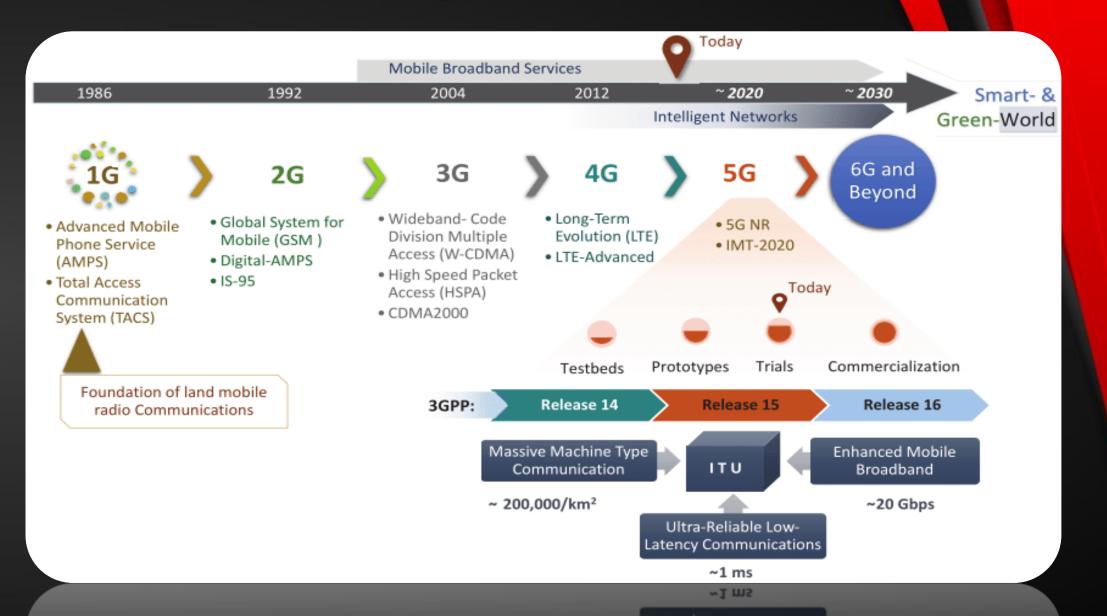
Training Course

2021

2G/3G/4G/5G Mobile Networks

Provider	4G					3G		2G		
	B20(800)	B8(900)	B3(1800)	B1(2100)	B7(2600)	B8(900)	B1(2100)	B8(900)	B3(1800)	B31(450)
PLUS	?	3526	1300	326	2850	3030	10737 / 10762	3-40	850	
PLAY	6275		1474	523	3350	2938		997		
ORANGE	6200		1749	79	3025	3082	10614	33-124		
T-MOBILE	6350		1599	227	3175	3055	10688	16-36		

4G TO 5G/NR Network Architecture


>MAIN ADVANTAGES OF 5G NETWORK PHONE MOBILITY

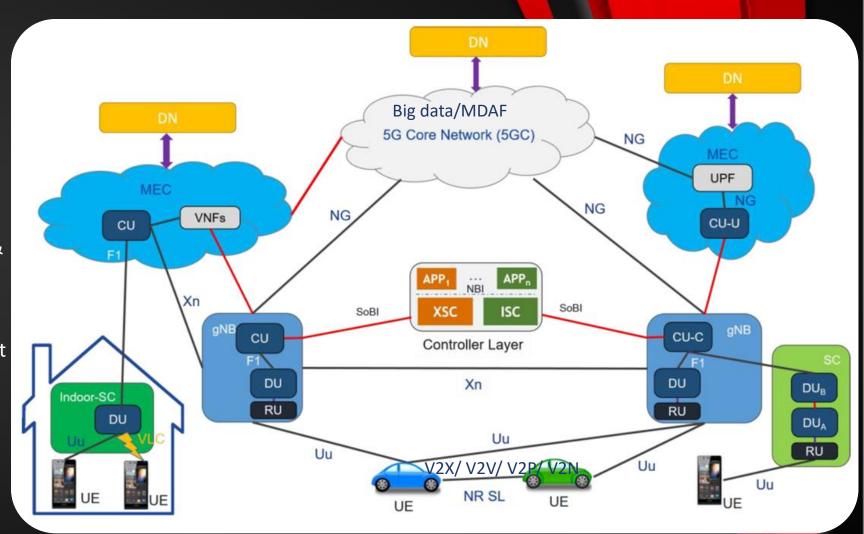
≻5G/NR NON-STANDALONE TO STANDALONE NETWORK ARCHITECTURE

≻5G / NR IMSI-CATCHER CHALLENGES

Training 2021

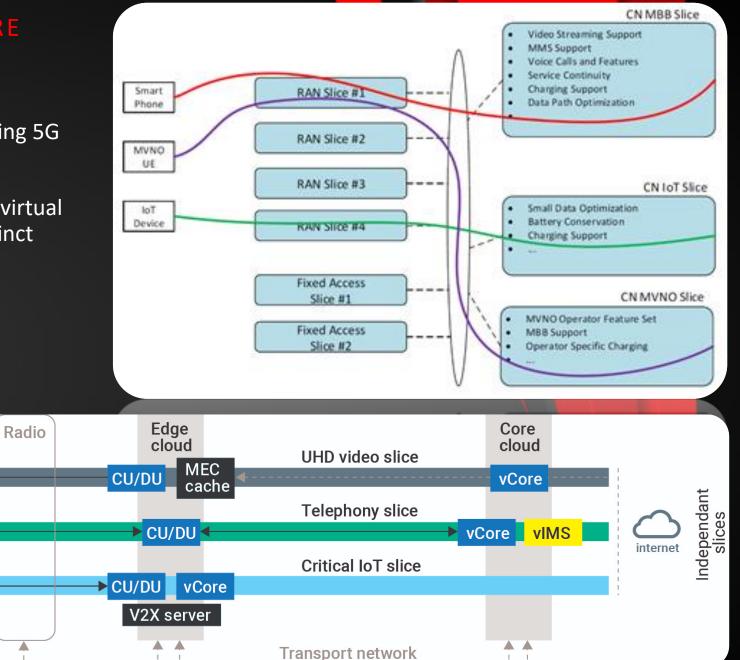
GENERAL ASPECTS – **NETWORK RADIO INTERFACE** Network **R**(andom) **A**(ccess) **T**(echnology) Evolution

4G TO 5G/NR NETWORK ARCHITECTURE *Main Advantages of 5G Network*


 Network latency is the time required for a set of data to travel between two points

Diversified Challenges and Gaps to Reach 5G

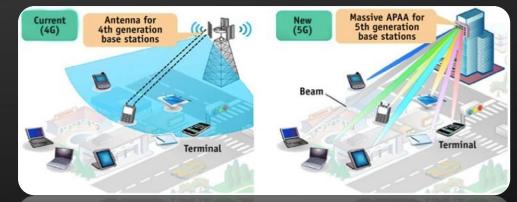
4G TO 5G/NR NETWORK ARCHITECTURE 5G Overall Radio Access Network Architecture

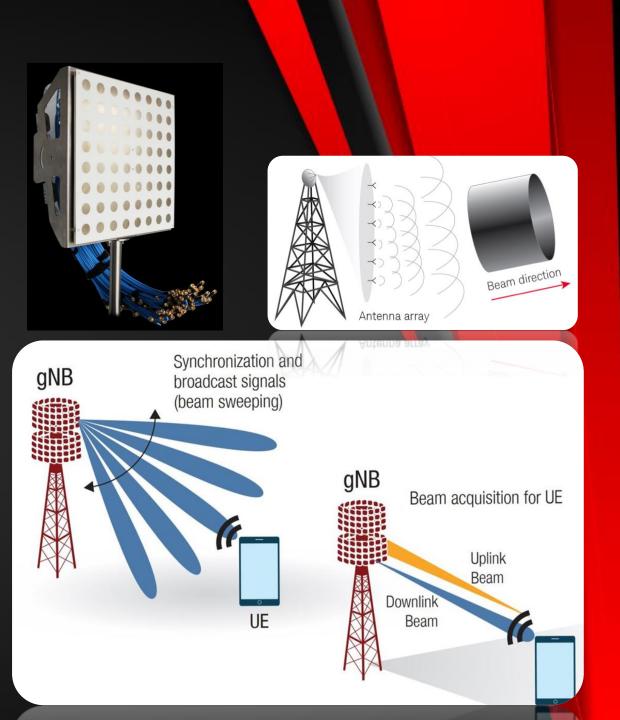

- CU Centralised Unit
- DU Distributed Unit
- SC Small Cell
- RU Radio Unit
- NR SL Sidelink
- V2X Vehicle-to-Everything
- VLC Visible Light Communication
- DN Data Network
- MEC Multi-Access Edge Computing
- BD/MDAF BigData and Management & Orchestration
- NBI Northbound Interface
- APP Application
- AMF Access and Mobility Management Function
- UPF User Plane Function
- SMF Session Management Function
- VNF Virtualized Network Function
- XSC Cross-Slice Controller
- ISC Intra-Slice Controller

4G TO **5G/NR NETWORK ARCHITECTURE** *Slicing*

- End-to-end network slicing is, arguably, the defining 5G feature
- 5G network slicing splits resources into logical or virtual networks ("slices") to address use cases with distinct characteristics and service level agreement (SLA) requirements

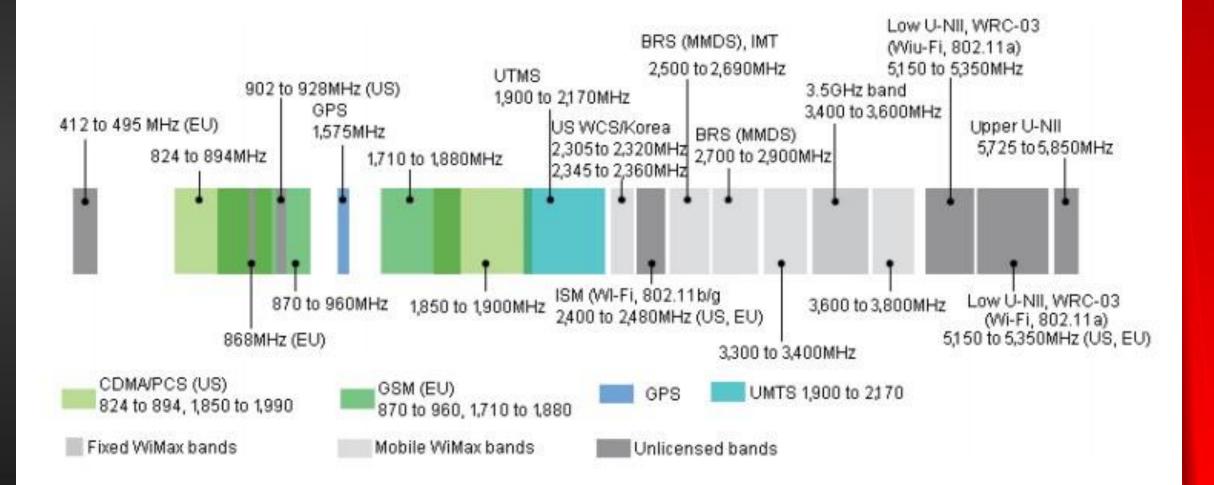
UHD


ITANSport network


- CU/DU: centralized/distributed unit
- IMS: IP multimedia subsystem
- IoT: internet of things
- MEC: multi-access edge computing
- UHD: ultra high definition
- V2X: vehicle to anything

4G TO **5G/NR NETWORK ARCHITECTURE** *Massive MIMO - Beamforming*

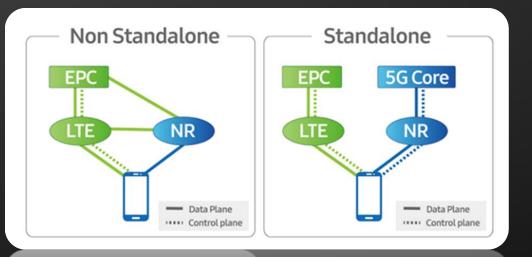
 Massive MIMO (massive multiple-input multipleoutput) is a type of wireless communications technology in which base stations are equipped with a very large number of antenna elements to improve spectral and energy

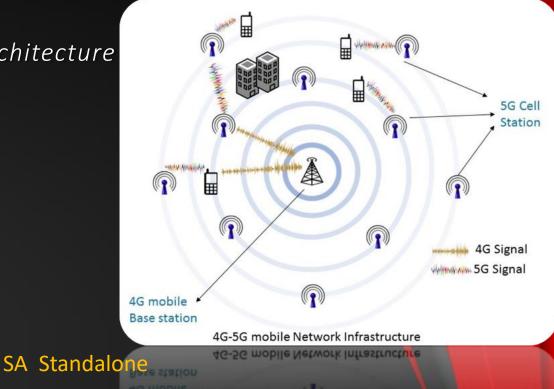

- Beamforming is a technique that focuses a wireless signal towards a specific receiving device
 - 5G Beamforming has been introduced to combat signal power and/or quality degradation
 - Beamforming is important for 5G deployments above 3GHz carrier frequencies, but is especially important for 5G mmWave deployments

GENERAL ASPECTS – NETWORK RADIO INTERFACE

Cellular Network Basics - Network Architecture - Cellular Spectrum Bands-

4G TO 5G/NR NETWORK ARCHITECTURE *5G / NR Bands*


Band	Duplex mode ^[A 1]	→ f (MHz) ◆	Common name 🗢	Subset of band	Uplink ^[A 2] (MHz) ◆	Downlink ^[A 3] (MHz) ◆	Duplex spacing (MHz)	Channel bandwidths ^[5] (MHz)	
n1	FDD	2100	IMT	n65	1920 – 1980	2110 – 2170	190	5, 10, 15, 20	
n2	FDD	1900	PCS ^[A 4]	n25	1850 – 1910	1930 – 1990	80	5, 10, 15, 20	
n3	FDD	1800	DCS		1710 – 1785	1805 – 1880	95	5, 10, 15, 20, 25, 30	
n5	FDD	850	CLR		824 – 849	869 - 894	45	5, 10, 15, 20	
n7	FDD	2600	IMT-E		2500 – 2570	2620 – 2690	120	5, 10, 15, 20, 25, 30, 40, 50	
n8	FDD	900	Extended GSM		880 – 915	925 – 960	45	5, 10, 15, 20	
n12	FDD	700	Lower SMH ^[A 5]		699 – 716	729 – 746	30	5, 10, 15	
n14	FDD	700	Upper SMH		788 – 798	758 – 768	-30	5, 10	
n18	FDD	850	Lower 800 (Japan)		815 – 830	860 – 875	45	5, 10, 15	
n20	FDD	800	Digital Dividend (FU)		832 – 862	791 – 821	-41	5, 10, 15, 20	
n25	FDD	1900	Extended PCS ^[A 6]		1850 – 1915	1930 – 1995	80	5, 10, 15, 20, 25, 30, 40	
n28	FDD	700	APT		703 – 748	758 – 803	55	5, 10, 15, 20 ^[A 7]	
n29	SDL	700	Lower SMH ^[A 8]		N/A	717 – 728	N/A	5, 10	
n30	FDD	2300	WCS ^[A 9]		2305 – 2315	2350 - 2360	45	5, 10	
n34	TDD	2100	IMT		2010 – 2025		N/A	5, 10, 15	
n38	TDD	2600	IMT-E ^[A 10]		2570 – 2620		N/A	5, 10, 15, 20, 40	
n39	TDD	1900	DCS–IMT Gap		1880 – 1920		N/A	5, 10, 15, 20, 25, 30, 40	
n40	TDD	2300	S-Band		2300 – 2400		N/A	5, 10, 15, 20, 25, 30, 40, 50, 60, 80	
n41	TDD	2500	BRS	n90	2496 – 2690		N/A	10, 15, 20, 30, 40, 50, 60, 80, 90, 100	
n77	TDD	3700	C-Band		3300 – 4200		N/A	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	
n78	TDD	3500	C-Band	n77	3300 – 3800		N/A	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	


4G TO 5G/NR NETWORK ARCHITECTURE

5G/NR Non-Standalone to Standalone Network Architecture

NSA Non-Standalone

- there are new 5G NR (radio base stations)
- 5G NSA network cannot run independently, it must rely on the existence of the 4G network
- But device will be connected to the 4G base station and the 4G core network for the signaling plane - *anchor*
- 5G base station only performs data offload, whether it is data offload from our 4G base station or data offload from the 4G core network EPC (*Evolved Packet Core*)

- new 5G equipment and devices from the base station to the core network
- 5G networks can operate independently
- 5G devices fully operate in 5G
- operation between 4G and 5G is performed :
 - through the interoperation between the 5G core network and the 4G EPC
 - through the operation between the upgraded LTE base station and the new 5G core network

GENERAL ASPECTS – NETWORK RADIO INTERFACE

Cellular Network Basics - Network Architecture - Radio Interface – Netmonitor Apps -

(P)		LOCA		(20	LocationInfo
	41.38	The second se			
					126.6 °
	KPI			DBILE D	
Calls	Pings 0	0 Prv	10.135.	115.158	3/32
OK	0	0 Pub	194.230	.159.2	16
Bloqu	ed O	Dns	100.200	.102.24	43,100.20
Dropp	ed O	0 Apn	internet		
voio	ce: IDLE		data: CC	NNECTI	ED
Radi	<u>olnfo</u>	4	G (LTE)	Apninfo
MCC:	214		F	SSI:	-89 dBm
MNC:	1 (vo	dafone	ES) F	SRP:	-99 dBm
TAC:	521		F	SRQ:	-6
eNB:	67		S	NR:	14
CELLI	D: 5		C	QI:	12
PCI:	436				
	N	IEIGHB	ORS		
	NR-DOI-	291	RSR	P: -1	10 dBm
	NB-PCI: NB-PCI:	459	RSR		

8:24 PM 🔳 🛿		54.0MB/s 🕫 📶 :: 🖓 😰				
= NF Ha			ô	Ø	:	
NR-ARFCN 648334	PCI 227	SS-RSRP -92.9 dBm		SS-SINF		
PLMN 226 / 05	Band N78	TAC 7042		CelliD 086 / 12		

NSA Dual Connectivity

	Master	Secondary
	LTE	NR
	B38 / 20 MHz	N78 / 50 MHz
	37950 / 70	648334/227
SINR	20.1 dBm	14.9 dBm
RSRP	-82.5 dBm	-94.8 dBm
	0.0 %	9.9 %
Tx Mode	TM2-TD	Scheme 1
	Rank 1	Rank 2
	10	203586
	9	18
CQI	14	12
Aodulation	16QAM	256QAM
	2	4
Phy. Thput	0.07 Mbps	432.60 Mbps
AC Thput	0.01 Mbps	389.92 Mbps
RLC Thput	0.01 Mbps	389.76 Mbps
DCP Thput	0.05 Mbps	388.94 Mbps
256Q Util.	0.0 %	3.8 %
64Q Util.	6.5 %	96.0 %